
Master 1 Advanced Robotics - Research Project

Learning Motion Patterns via IMU-Based
Odometry with Neural Networks

May 15, 2024

Research presented by
Raphael Blanchard

to the Robotics Department of
Ecole Centrale de Nantes

Supervised by:
Sebastian Scherer, Shibo Zhao (Carnegie Mellon University)

Elwan Héry (Ecole Centrale de Nantes)



Abstract—We present a learning-based approach for odometry
using solely Inertial Measurement Unit (IMU) data. The primary
goal of our research is to enable a neural network to learn and
capture the inherent motion patterns of an agent, thereby facili-
tating the development of higher intelligence navigation systems.
By integrating components such as Periodic AutoEncoders (PAE)
[1] and Stationary Wavelet Transforms (SWT) [2], our method
extracts meaningful features from IMU data. This dual-focused
approach not only enhances the accuracy and robustness of the
odometry system but also allows for the extraction of valuable
motion pattern information.

I. INTRODUCTION

Odometry is a critical component of autonomous navigation,
enabling robots to track their position and orientation over
time. Traditional Visual Odometry (VO) [3], Visual-Inertial
Odometry (VIO) [4] and Lidar-Inertial Odometry (LIO) [5]
systems rely heavily on perception sensors such as cameras
and lidars. However, these systems face significant challenges
in environments where perception sensors struggle, such as
low-light or featureless terrains. A notable example is NASA’s
Ingenuity helicopter [6] on Mars, which experienced landing
issues on it’s 72nd flight due to lack of visual features. This
highlights the need for robust odometry solutions that can
operate effectively regardless of the environment.

Inertial Measurement Units (IMU) are a type of sensor that
provide motion-related data unaffected by environmental con-
ditions. This makes them particularly valuable for odometry
in challenging scenarios. However, using IMU data alone for
odometry is not possible when dealing with complex motion
and long trajectories due to high levels of noise and drift over
time. Despite these challenges, recent advancements in deep
neural networks (DNNs) offer new opportunities to enhance
IMU-based odometry.

Our goal in this project was not only to improve the results
of previous work on learning-based odometry, but also to
enable our network to learn the robot’s motion patterns. To
achieve this, we used the work of Starke et al. [1] on Periodic
AutoEncoders (PAE) to extract periodic features from the
agent. We also implemented the Stationary Wavelet Transform
(SWT), which allowed us to obtain information from both the
low and high frequency components in the Time-Frequency
domain.

Acquiring general information about the environment to
enhance intelligent navigation systems is an active area of
research. Neural-Fly [7], for instance, rapidly learned an
effective representation of aerodynamics in different wind
conditions, which then helped to control an Unmanned Aerial
Vehicle (UAV) in strong winds. 3D scene graphs, as demon-
strated in Hydra [8], enable robots to understand and cate-
gorize different elements of their environment. Similarly, our
approach aims to provide robots with a more comprehensive
understanding of their motion, moving towards the goal of
achieving higher levels of robotic intelligence. To summarize,
our contributions are:

• Proposing a network architecture that incorporates new
components, based on previous work and achieving better
results for odometry.

Fig. 1: Result on unseen data. Left plot is the 2D ground truth
(orange) and predicted (blue) trajectories, right plots are the
ground truth (orange) and predicted (blue) translations for the
x, y and z axis.

• Enabling our network to learn and capture the motion
patterns of the robot, providing valuable insights into the
robot’s dynamics.

II. RELATED WORK

We primarily used RNIN-VIO [9], a robust odometry
system using handheld data collected via a mobile phone.
This framework utilizes a deep learning-based inertial network
(RNIN) that relies on IMU measurements. They fuse the
RNIN network with visual-inertial (VI) measurements within
an Extended Kalman Filter (EKF) framework, enhancing pose
prediction by combining diverse sources of data.

In our work, we focus specifically on the RNIN part. We
use the base of the RNIN network (Resnet-LSTM) to design
our architecture and compare our results with this network.

III. SYSTEM OVERVIEW

A. System

Our proposed architecture is illustrated in Fig. 2. The inputs
to the network include raw IMU data, the output of a forward
pass in a pretrained Periodic AutoEncoder (PAE), and the
outputs of the Stationary Wavelet Transform (SWT) for both
linear acceleration and angular velocities. The network then
predicts the global translation/displacement of the robot for
the x, y, and z coordinates. We provide detailed explanations
of the PAE and SWT, along with the reasons for their inclusion
in our architecture, in Sections IV and V, respectively.

Fig. 2: System architecture



B. Network

Similarly to RNIN-VIO, our network consists of a 1D
version of a ResNet18 to extract features from the motion,
a LSTM and fully-connected layers (see Fig. 3). We process
our data using windows of 1 second’s worth of data at 200Hz,
and use sequences of 2 windows as inputs to our network.

Fig. 3: Network architecture

The inputs to the Resnet-LSTM are as follows:
• Raw IMU data, 6 channels (3 for linear acceleration and

3 for angular velocities).
• The output of a pretrained PAE that was given angular

velocities, 5 channels.
• Information from the Stationary Wavelet Transform

(SWT), including 6 channels for angular velocities and 6
channels for linear accelerations.

C. Loss functions

To ensure the network focuses on both local accuracy and
long-term global accuracy, we used three loss functions that
we define in equation (1), (2) and (3).

Fig. 4: Relative and Absolute losses

Relative Loss: To allow the network to learn the movement
of a single window and improve the measurement accuracy of
the direct output of the network, we add a relative loss (RL)
function to the single window. The Mean Square Error (MSE)
is chosen to optimize the loss. RL loss is defined as:

LMSE
RL (d, d̂) =

1

n

n∑
i=1

 1

M

m+M∑
j=m

(
dj − d̂j

) (1)

where d̂j is the j-th window 3D translation output of the
network and dj is the corresponding ground truth. n is the
batch size during training, and m is the start window of the
sequence. M is the number of LSTM windows.

Absolute Loss: In addition to the accuracy of a single
window, we are more concerned about the cumulative error

over a longer period of time. To allow the network to learn
the long sequence relationship of the motion, thereby reducing
the long-term cumulative error, we designed the absolute loss
function:

LMSE
ALL (d, d̂) =

1

n

n∑
i=1

 1

M

m+L∑
j=m

(
dm+j − d̂m+j

) (2)

Z-MSE: We’ve also used the MSE for the z axis to adapt the
network to motions along the z axis. We’ve seen that without
this loss the network lacked accuracy when predicting motions
along the z axis. This loss is defined as:

Lz(d, d̂) = c ∗ 1

n

n∑
j=1

(
dzj − d̂zj

)2

(3)

where dzj is the Z translation of the j-th window, d̂zj it’s
corresponding ground truth and c a coefficient to alter the
weight of this function into our final loss as defined:

Final Loss: The final loss function is the sum of the relative
loss, absolute loss, and z-axis MSE loss, and is defined as:

Lfinal = LMSE
RL + LMSE

ALL + Lz (4)

D. Implementation

We use PyTorch as the implementation of our model, and
train it using the Adam optimizer with an initial learning rate
of 0.0001. We use a subset of data provided by RNIN-VIO
collected on a mobile phone, for a total of 4.5 hours of training
data. It took 3 epochs for our network to reach a plateau, which
took approximately 1h30 on an NVIDIA 3070ti.

IV. PERIODIC AUTOENCODERS

Periodic AutoEncoders (PAE) [1] employ a learning-based
approach to effectively learn and represent periodic features
in data through sine waves. In our case, the PAE learns the
parameters of 5 sine waves for each sequence of data using
the Fast Fourier Transform (FFT). The PAE then uses the sine
waves to reconstruct the original signal and then evaluates the
reconstruction loss with the Mean Squared Error to ensure
that the learned parameters accurately capture the periodic
characteristics of the data.

We chose to work with 2-second sequences because, upon
computing the FFT on different durations of data, we observed
that using 2 seconds of data provided the best reconstruction
results when using the dominant frequency (see Fig. 5).
This suggests that the data from angular velocities frequently
exhibits periodic behavior within 2-second windows.

The PAE network was pretrained on a subset of trajectories
from our training data. Once pretrained, we pass the raw
angular velocities through the PAE and use the outputted sine
waves for each window as additional inputs to the ResNet-
LSTM.

We decided to use PAE because it allows for the extraction
of meaningful information about the motion patterns of the
agent. As demonstrated in their paper, the phase representation



Fig. 5: Sine wave reconstruction from FFT (dominant fre-
quency) on z-axis angular velocity obtained from a legged
robot walking on rough terrain, using 2, 5 and 10-second data
windows.

of periodic data captured by PAE provides a more informative
and compact representation of the motion patterns compared
to a convolution representation or direct angular velocities
processed using Principal Component Analysis (PCA) [10]
(see Fig. 6). This ability to effectively represent periodic
motion data aligns with our objective to enhance the network’s
understanding of the robot’s dynamics, also leading to im-
proved odometry performance.

Fig. 6: 2D PCA embedding of the learned phase manifold
compared to velocity and low-dimensional convolutional em-
beddings, highlighting the time series of a single motion clip
of biped locomotion (top) and a dance choreography (bottom).
(from [1])

V. STATIONARY WAVELET TRANSFORM

We chose to use the Wavelet Transform (WT) [11] because
it provides both time and frequency information, unlike the
FFT, which only operates in the frequency domain. Figure 7
illustrates the lack of temporal information when using the
FFT.

Fig. 7: Signals 1 (top) and 2 (bottom) contain four frequencies
(4, 30, 60, 90 Hz). The four frequencies appear at all times
for Signal 1 and sequentially for Signal 2. Even though the
two signals are different, the frequency spectra on the right
for both signals are similar.

The WT works by applying a sequence of low and high
pass filters to the signal, where the filters use wavelets as their
impulse response. Wavelets are localized oscillatory functions
that help decompose the signal into various frequency compo-
nents while retaining temporal information (see Fig. 8). This
initial decomposition results in two types of coefficients:

• Approximation Coefficients (Low-Frequency Compo-
nents): These are obtained by convolving the signal with
a low pass filter.

• Detail Coefficients (High-Frequency Components): These
are obtained by convolving the signal with a high pass
filter.

The filtering process can be repeated at multiple levels. Each
subsequent level captures progressively finer details.

Fig. 8: Wavelet types

We use the Stationary Wavelet Transform (SWT) [2] be-
cause it maintains the same input and output shapes by avoid-
ing the downsampling step present in the Discrete Wavelet
Transform (DWT). We then use specific outputs from the SWT
using the Daubechies 4 (db4) wavelet. Specifically:

• Level 3 coefficients for low-frequency information about
the angular velocities (1 channel for each axis: x, y, z,
totaling 3 channels).

• Level 1 coefficients for high-frequency information about
the angular velocities (3 channels).

• Level 3 coefficients for low-frequency information about
the linear acceleration (3 channels).



• Level 1 coefficients for high-frequency information about
the linear acceleration (3 channels).

Fig. 9: Angular velocity of x axis (top), its SWT low frequency
coefficients (middle) for multiple levels and its SWT high
frequency coefficients (bottom) for multiple levels.

VI. EXPERIMENTS

In this section, we evaluate the performance of our network
for odometry using three key metrics introduced in [12]: Ab-
solute Trajectory Error (ATE), Time-based Relative Trajectory
Error (T RTE), and Distance-based Relative Trajectory Error
(D RTE). These metrics are defined as:

• Absolute Trajectory Error (ATE): The Absolute Tra-
jectory Error (ATE) measures the difference between the
estimated and ground truth trajectories by calculating the
Root Mean Squared Error (RMSE) of their positions:

ATE =

√√√√ 1

n

n∑
i=1

∥ei − gi∥2 (5)

where ei is the estimated position at time i, gi is the
ground truth position at time i, and n is the number of
positions.

• Time-based Relative Trajectory Error (T RTE): The
Time-based Relative Trajectory Error (T RTE) evaluates
the drift in the estimated trajectory over fixed time
intervals. This metric computes the RMSE of the endpoint
drifts from fixed windows of the trajectory, averaged
over different window sizes. It measures how well the
estimated trajectory aligns with the ground truth over
various time segments, indicating the consistency of the
odometry over time.

• Distance-based Relative Trajectory Error (D RTE):
The Distance-based Relative Trajectory Error (D RTE)
evaluates the drift in the estimated trajectory over fixed
distance intervals. Similar to T RTE, it computes the
RMSE of the endpoint drifts but does so over fixed
distance segments, here of one meter. This metric assesses
the accuracy of the trajectory estimation over spatial
intervals, providing insight into how well the odometry
maintains accuracy over varying distances.

The following results demonstrate that our network per-
forms better and is able to predict 3D translations more accu-
rately by introducing additional features and loss functions.

TABLE I: Comparison of performance metrics between RNIN
and our network

Metric RNIN Our Network
Average ATE 3.0739 2.3422

Average T RTE 3.7912 2.8872
Average D RTE 0.2745 0.1639

1.90, 2.96, 0.27 0.42, 0.87, 0.15

1.69, 2.31, 0.19 0.73, 1.04, 0.11

Fig. 10: Results on unseen data from RNIN network (left) and
ours (right). Numbers correspond respectively to ATE, T RTE,
D RTE

VII. MOTION PATTERN EXTRACTION

We extract features from a forward pass through the ResNet
and use PCA [10] and t-SNE [13] to visualize these features
in 2D. This helps us observe the inherent motion patterns
of the agent (here a human), with similar motions clustering
together as can be seen in Figure 12, indicating the network’s
understanding of underlying dynamics.

Using feature extraction from a neural network to learn
about motion patterns can be particularly useful for robots with
motions that are less understood, such as drones. For these
robots, defining motion pattern thresholds is challenging due to
their dynamic nature, whereas neural networks can infer these



patterns when properly trained. For example, Neural-Fly [7]
leverages the observation that aerodynamics in different wind
conditions share a common representation, with the wind-
specific dynamics lying in a low-dimensional space. Applying
this method to various robots can enhance their ability to
understand and adapt to their motion patterns, improving
navigation and interaction capabilities.

Fig. 11: 3 unseen trajectories split into 4 segments

Fig. 12: t-SNE visualization of features from the 3 unseen
trajectories in Fig. 11. Orange circled zone corresponds to right
motion, blue zone corresponds to upward/straight motion, red
zone corresponds to left motion.

VIII. FUTURE WORK

In our future work, we aim to apply our approach to a wide
variety of robots. We are currently working on this and have
collected data from several robots in real life (see Fig. 13).
We’re also using NVIDIA’s simulation and Reinforcement-
Learning framework Isaac Lab [14] to collect data from robots,
such as the humanoid robots H1 and G1, Anymal-C, Spot, and
a quadcopter (see Fig. 14). Using simulation environments
allows us to gather extensive data without the high costs
associated with physical robots.

IX. CONCLUSION

In this project, we developed a learning-based approach
for odometry that exclusively uses Inertial Measurement Unit
(IMU) data. Our aim was not only to address the odometry
task but also to enable the network to recognize and capture
the intrinsic motion patterns of the agent. To accomplish this,

(a) UAV (b) Spot

(c) UGV (d) Off-road car

Fig. 13: Robots of the AirLab that we use data from.

(a) G1 humanoid (b) Spot

(c) AnymalC (d) Quadcopter

Fig. 14: Robots from Isaac Lab that we use data from.

we incorporated components such as Periodic AutoEncoders
(PAE) and Stationary Wavelet Transforms (SWT) to extract
significant features. Our results indicate that these enhance-
ments significantly boost the accuracy and robustness of the
odometry system and allow for the extraction of motion pattern
information from the agent.

REFERENCES

[1] S. Starke, I. Mason, and T. Komura, “Deepphase: periodic autoencoders
for learning motion phase manifolds,” ACM Trans. Graph., vol. 41, no. 4,
jul 2022. [Online]. Available: https://doi.org/10.1145/3528223.3530178

[2] G. P. Nason and B. W. Silverman, The Stationary Wavelet Transform
and some Statistical Applications. New York, NY: Springer New York,
1995, pp. 281–299. [Online]. Available: https://doi.org/10.1007/978-1-
4612-2544-717



[3] D. Nister, O. Naroditsky, and J. Bergen, “Visual odometry,” in Proceedings
of the 2004 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 2004. CVPR 2004., vol. 1, 2004, pp. I–I.

[4] A. I. Mourikis and S. I. Roumeliotis, “A multi-state constraint kalman filter
for vision-aided inertial navigation,” in Proceedings 2007 IEEE International
Conference on Robotics and Automation, 2007, pp. 3565–3572.

[5] J. Zhang and S. Singh, “LOAM: lidar odometry and mapping in real-time,”
in Robotics: Science and Systems X, University of California, Berkeley, USA,
July 12-16, 2014, D. Fox, L. E. Kavraki, and H. Kurniawati, Eds., 2014.
[Online]. Available: http://www.roboticsproceedings.org/rss10/p07.html

[6] H. F. Grip, J. S. Lam, D. S. Bayard, D. T. Conway, G. Singh,
R. Brockers, J. Delaune, L. H. Matthies, C. A. Malpica, T. Brown, A. Jain,
A. M. S. Martin, and G. B. Merewether, “Flight control system for nasa’s
mars helicopter,” AIAA Scitech 2019 Forum, 2019. [Online]. Available:
https://api.semanticscholar.org/CorpusID:86511266

[7] M. O’Connell, G. Shi, X. Shi, K. Azizzadenesheli, A. Anandkumar, Y. Yue,
and S.-J. Chung, “Neural-fly enables rapid learning for agile flight in strong
winds,” Science Robotics, vol. 7, no. 66, p. eabm6597, 2022. [Online].
Available: https://www.science.org/doi/abs/10.1126/scirobotics.abm6597

[8] N. Hughes, Y. Chang, and L. Carlone, “Hydra: A real-time spatial perception
system for 3D scene graph construction and optimization,” 2022.

[9] D. Chen, N. Wang, R. Xu, W. Xie, H. Bao, and G. Zhang, “Rnin-vio:
Robust neural inertial navigation aided visual-inertial odometry in challenging
scenes,” in 2021 IEEE International Symposium on Mixed and Augmented
Reality (ISMAR), 2021, pp. 275–283.

[10] K. Pearson, “Liii. on lines and planes of closest fit to systems of points
in space,” The London, Edinburgh, and Dublin Philosophical Magazine and
Journal of Science, vol. 2, no. 11, pp. 559–572, 1901. [Online]. Available:
https://doi.org/10.1080/14786440109462720

[11] S. Mallat, “A theory for multiresolution signal decomposition: the wavelet
representation,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 11, no. 7, pp. 674–693, 1989.

[12] S. Sun, D. Melamed, and K. Kitani, “Idol: Inertial deep orientation-estimation
and localization,” 2021.

[13] L. van der Maaten and G. E. Hinton, “Visualizing data using t-sne,” Journal
of Machine Learning Research, vol. 9, pp. 2579–2605, 2008. [Online].
Available: https://api.semanticscholar.org/CorpusID:5855042

[14] M. Mittal, C. Yu, Q. Yu, J. Liu, N. Rudin, D. Hoeller, J. L. Yuan,
R. Singh, Y. Guo, H. Mazhar, A. Mandlekar, B. Babich, G. State,
M. Hutter, and A. Garg, “Orbit: A unified simulation framework for
interactive robot learning environments,” IEEE Robotics and Automation
Letters, vol. 8, no. 6, p. 3740–3747, Jun. 2023. [Online]. Available:
http://dx.doi.org/10.1109/LRA.2023.3270034


